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An accurate solution describing the dynamics of complex gas-dynamic structures 
arising in the adiabatic compression of material in conditions with aggravation 
is constructed. 

Impactless supercompression of a finite mass of gas [1-22] occurs if the pressure at the 
boundary of the material (piston) increases in the following conditions with aggravation 

= p 0 ( O - - t )  ~ o o ,  t--*tj, n s = - 2 Y ( N +  l)/(?q-l f f -N(? - l ) ) ,  (1) p (xp, t) .s 

where tf < = is the instant of aggravation; N = 0, i, 2. 

Boundary conditions with aggravation in gas-dynamics problems were studied in [13-20], 
and effects of localization and formation of gas-dynamic structures (temperature or density 
extrema associated with fixed gas particles) in media with an arbitrary entropy distribution 
for the cases N = 0, 2 in [17-19]. 

It is shown in the present work that, for all axisymmetric (N = i) self-similar solutions 
in separable variables (which, in contrast to solutions in characteristics [i, 7-10], admit 
of generalization to a broad class of physical processes [2, 3, 6, ii, 12]), the pressure is 
a linear function of the mass coordinate. In the case of adiabatic compression of ideal gas 
by a piston in Eq. (I), this allows an accurate solution describing, in particular, the dy- 
namics of complex structures in a compression wave to be found. Numerical calculations de- 
monstrate the stability of the solutions obtained, the achievement of self-similar conditions 
of compression, and methods of exciting complex gas-dynamic structures. 

Separation of the time and mass variables [2, 3, 6, Ii, 12] in the equations of axisym- 
metric gas motion 

O~r Op --=--r-- (2) 
at ~ & 

leads to two ordinary differential equations 

p~(x)=~,  r~r7 lp7 l = - k ,  p = p l ( t )  p~(x), r = r l ( t )  r 2(x) 
where ~ is the separation constant. 

It follows from Eq. (3) that 

(3) 

p (x, t) = Pl (t) (%x q- C), C = const. (4) 

Hence, a p a r t  from the  dependence on the  p r o p e r t i e s  of  the  medium and a l s o  on the  equa-  
t i o n s  of energy balance and continuity of all the flows described by self similar solutions 
in separable variables, a linear dependence of the pressure on the mass coordinate is char- 
acteristic. If a potential force also appears in the equation of motion in Eq. (2), an ana- 
logous conclusion is valid for the quantity Z = p + ~ (K is the potential). 

In the case of adiabatic flow of ideal gas, it is necessary to add to Eq. (2) the adiaba- 
ticity integral and the continuity equation 

&l 0 (rv) 8v 8p Or 
- , r , - v ,  p 'q '~  = ~ ( x ) ,  

8t Ox Ot Ox 8t ' (5) 

where ~(x) is an arbitrary summable function describing the entropy distribution over the 
mass of the material. 
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Fig. i. Dynamics of complex gas-dynamic structures (pO = i, v ~ = 0, ~ = 
8~/Xp, x = 5.0, y = 5/3): tt = 0.722; t= = 6.930; t3 = 0.979; t4 = �9 
(curves 1-4, respectively). 

Fig. 2. Excitation of complex gas-dynamic structures (pO = pO = I, v ~ = 0, 
x = 5.0, y = 5/3): t, = 0.711; t= = 0.863; t3 = 0.917; t~ = 0.942 (curves 
i~4, respectively) 

Consider the problem of gas compression by a piston at the point x = Xp, the pressure at 
which increases in the conditions with aggravation in Eq. (i), i.e., one< of the solutions of 
the system in Eq. (3)�9 

The property in Eq. (4) allows an accurate solution of Eqs. (i) and (5) to be obtained: 

p ( x  t) = Po (t,, - -  t ) - ~ ( X x  -}- C) ,  % ~ (I  - -  C)/Xp, 
v (x, t) - -  o o ( t l  - -  t) - (w-1) /~ '  vz (x), o 2 (x) = .T-]/r~2cp (x)(~,x ,+ c)-l/Vdx, 

r(x, t) ----ro(tl--t)~mr,(x), r,(x)=- -r ~](x, t )=  ~(x)p-I /~(x,  t), 
(6) 

where the constant of integration in the expression for the velocity is chosen from the condi- 
tion v(0) = r(0) = 0. The parameter % is calculated from Eq. (I); the quantity 0 < C < i 
determines the pressure at the symmetry center of the system p(0, t) = Cp(xp, t). If C < 0, 
however, the pressure vanishes at some point x* =-C/% < Xp and the solution in Eq. (6) de- 
scribes gas compression with an internal cavity collapsing as t § tf to the symmetry axis of 
the system. 

The inhomogeneous entropy distribution in the medium and the development of conditions 
with aggravation, as shown in [13, 15-19], lead to the appearance of structures in the compres- 
sible material. In the given flows, the condition of existence of gas-dynamic density (p = 
n-*) and temperature (T = p~R -t) structures is found from Eq. (6) in an explicit form 

d ~  _ y~  (for p), - -  ( ~ r  T) .  
dx k x + C  dx  ~ - - 1  k x + C  ( 7 )  

If ~'(x) ~ 0, there are no structures (isoentropic compression [2, 14]); if ~'(x) > 0, 
only density structures may exist and if ~'(x) < 0 only temperature structures. The number 
of extrema is completely determined by the slope of ~(x); hence, even with a monotropic en- 
tropy distribution in a compressible medium, all possible configurations of temperature or 
density extrema may exist. 

Thus, the solution in Eq. (6) describes gas flow with the following interesting proper- 
ties (S conditions [2, 3, 6, 11-20]): i) the material is compressed in conditions with ag- 
gravation: as t § tf, the pressure, density, and valocity of the medium increase indefinitely 
for all 0 ! x ! Xp; 2) compression occurs without the appearance of shock waves; 3) complex 
gas-4ynamic structures exist in the compression wave. 
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The spatial characteristics of Eq. (6) are valid for all adiabatic flows with a linear 
velocity profile over the radius [21, 22], since Eq. (4) holds for all axisymmetric flows with 
homogeneous deformation. 

Numerical calculations of Eqs. (i) and (5) by the method of [23] show that the self- 
similar solutions in Eq. (6) are stably reproduced with increase in pressure at the piston by 
a factor of 107 . For the achievement of S conditions of compression (the establishment of a 
linear pressure profile in the mass coordinates and stabilization of the wave halfwidth), ap- 
proximately 25-fold increase in pressure at the piston boundary is sufficient; see [20], for 
example. 

The dynamics of complex gas-dynamic structures is shown in Fig. i. The initial pressure 
and velocity distributions are homogeneous; the density is specified in the form P(x, 0) = 
2 + cos(~x). The shock wave arising because of non-self-similarity of the initial data ac- 
cumulates at the symmetry axis and is then reflected. Consequently, there is a change (al- 
though weak) in the coordinates and amplitudes of the initia] density extrema (times tl, t2). 
Then under the action of boundary conditions with aggravation 

p(Xp. t) = ( 1 - -  t)-~ (8) 

s t a b l e  d e n s i t y  s t r u c t u r e s  d e s c r i b e d  b y  Eq.  (6) a r e  fo rmed  ( t 3 ,  t ~ ) .  

One method o f  e x c i t i n g  complex  gas -dynarmic  s t r u c t u r e s  w i t h  homogeneous  i n i t i a l  d a t a  and 
m o n o t o n i c  b o u n d a r y  c o n d i t i o n s  i n  Eq. (8) i s  shown i n  F i g .  2. On a c c o u n t  o f  t h e  i n i t i a l  m i s -  
ma tch  o f  t h e  p r e s s u r e  a t  t h e  p i s t o n  and i n  t h e  medium -- p ( x p ,  0 ) / p ( x ,  0) = 50 -- a s h o c k  wave 
i s  f o r m e d  and t h e n  a c c u m u l a t e s  and i s  r e f l e c t e d  f rom t h e  symmet ry  a x i s  o f  t he  s y s t e m  ( t l ,  
ta)~ this leads to an inhomogeneous entropy distribution. Further increase in pressure at 
the piston in conditions with aggravation in Eq. (8) ensures adiabatic supercompression of 
the material (without the appearance of new shock waves) and the formation of stable gas- 
dynamic structures of S conditions (t3, ta); see the solution in Eqo (6). 

NOTATION 

p, v, ~, T, 0, pressure, velocity, specific volume, temperature, and density of the mat- 
erial; t, time; x, mass coordinate; r, particle radius; y, adiabatic modulus; N, symmetry in- 
dex; R, gas constant. 
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SUPERSONIC FLOW OVER A SPHERE IN THE WAKE OF A BLUNT CYLINDER 

Yu. P. Golovachev and N. V. Leont'eva UDC 533.601.15 

The authors use numerical solutions of the Navier--Stokes equations to investi- 
gate the influence of geometric factors on the flow structure ahead of a sphere 
and the surface distributions of pressure and heat transfer. 

References [1-6] have conducted experimental and theoretical investigations of super- 
sonic flow over bodies located in a wake region. It has been established that a nonuniform 
distribution of the incident flow parameters has an appreciable influence on the bow shock 
shape, the Boundary layer structure, and the distribution of pressure, friction stress and heat 
transfer. It has been indicated that reverse circulation flows may form on the forward sur- 
face of blunt bodies. In the theoretical studies the wake flow was modeled By different shear 
flows. In the present paper the parameters of the flow incident on a sphere are adopted from 
the solution of the problem of the supersonic wake behind a blunt cylinder obtained in [7], 
using the Navier--Stokes equations under the flow symmetry hypothesis. We investigate how the 
shock layer structure and the distribution of drag and heat transfer on the surface of the 
sphere depend on the distance between the bodies and their radii. 

i. We consider stationary axisymmetric flow over a sphere whose center is located on 
the axis of the supersonic wake behind a longitudinally washed blunted cylinder. The computa- 
tion region is bounded by the body surface, the axis of symmetry, the bow shock, and a cer- 
tain surface on which the normal velocity component of the gas is everywhere supersonic apart 
from a narrow wall region. The flow is described by the full Navier--Stokes equations. The 
specific heat of the gas is considered constant. The temperature dependence of the viscosity 
is approximated by the function ~ ~ /~, and the Prandtl number Pr = 0.7. 

As boundary conditions on the bow shock we use the generalized Rankine-Hugoniot relations. 
On the body surface we assign conditions of no slip, impermeability, and either a constant 
temperature or a thermal insulation condition. The other two boundaries have, respectively, 
the symmetry conditions and approximate boundary conditions based on the hypothesis of a suf- 
ficiently smooth solution with respect to the angular coordinate. The stationary solutions 
are found by a time-dependent method. As initial data in most cases we assume the results 
of solving the problem for the close variant of the flow conditions. 

2. The full unsteady Navier--Stokes equations for a compressible gas in spherical coor- 
dinates have been given in [7]. In solving the problem the distance from the sphere surface 
is normalized by the shock standoff distance. As a result the shock layer region examined is 
transformed into a rectangle. The original equations are written for the vector of the de- 
sired functions X = {u T v p}T in the form 
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